The Science of Ascend IV Therapy

The Importance of Hydration

  • Water is critical for some of your body’s most important functions. Water helps to nourish cells, flush toxins out of organs, and protect the eyes, ears and nose by keeping them moist. In fact, water makes up approximately 60% of the average adult human body.
  • Rehydrating by drinking fluids is inefficient because oral hydration is limited by the time it takes the water that is consumed to be emptied from the stomach and absorbed by the intestine. This process is particularly slow on an empty stomach.
  • When dehydration occurs, the body struggles to maintain its key functions, which leads to a variety of symptoms. These symptoms include headaches, muscle fatigue, and loss of coordination. Even small amounts of water loss may hinder cognitive ability, athletic performance, and mood.
  • Maintaining adequate fluids in the body depends on sufficient electrolyte levels, which are tightly linked to water absorption in the intestines.

Why IV Therapy

IV infusions offer a more efficient means to hydration because infusions bypass the gastrointestinal (GI) tract and enter directly into the bloodstream, delivering much faster hydration along with a balanced complement of electrolytes and nutrients.

The World Health Organization lists IV hydration as an essential medicine, based on the effectiveness and efficiency of this method and the importance of hydration to life and wellness. These infusions have become the gold-standard for providing hydration in hospitals.
Ascend's infusions produce unparalleled benefits. Enriched with bountiful nutrients and strategically formulated to provide maximum absorption rates, these infusions harness the benefits of IV hydration while simultaneously conferring other health benefits as well.

Primary Advantages of IV Infusions

  • Hydrates instantly
  • Replenishes nutrients
  • Rebalances electrolytes
  • Bolsters immune system
  • Boosts energy
  • Relieves ailments rapidly
  • Maximizes muscle building and recovery
  • Detoxifies the entire body
  • Supports healthy skin and youthful appearance
  • Helps regulate sleep and mood
References
  1. DePhillipo NN, Aman ZS, Kennedy MI, Begley JP, Moatshe G, LaPrade RF. Efficacy of Vitamin C Supplementation on Collagen Synthesis and Oxidative Stress After Musculoskeletal Injuries: A Systematic Review. Orthop J Sport Med. 2018;6(10):2325967118804544. doi:10.1177/2325967118804544
  2. Waibel JS, Mi Q-S, Ozog D, et al. Laser-assisted delivery of vitamin C, vitamin E, and ferulic acid formula serum decreases fractional laser postoperative recovery by increased beta fibroblast growth factor expression. Lasers Surg Med. 2016;48(3):238-244. doi:10.1002/lsm.22448
  3. Jeong J-H, Kim M-B, Kim C, Hwang J-K. Inhibitory effect of vitamin C on intrinsic aging in human dermal fibroblasts and hairless mice. Food Sci Biotechnol. 2018;27(2):555-564. doi:10.1007/s10068-017-0252-6
  4. Carr AC, Maggini S. Vitamin C and Immune Function. Nutrients. 2017;9(11). doi:10.3390/nu9111211
  5. Su M, Guo C, Liu M, Liang X, Yang B. Therapeutic targets of vitamin C on liver injury and associated biological mechanisms: A study of network pharmacology. Int Immunopharmacol. 2019;66:383-387. doi:10.1016/j.intimp.2018.11.048
  6. Elste V, Troesch B, Eggersdorfer M, Weber P. Emerging Evidence on Neutrophil Motility Supporting Its Usefulness to Define Vitamin C Intake Requirements. Nutrients. 2017;9(5). doi:10.3390/nu9050503
  7. Ye Z, Song H. Antioxidant vitamins intake and the risk of coronary heart disease: meta-analysis of cohort studies. Eur J Cardiovasc Prev Rehabil. 2008;15(1):26-34. doi:10.1097/HJR.0b013e3282f11f95
  8. Knekt P, Ritz J, Pereira MA, et al. Antioxidant vitamins and coronary heart disease risk: a pooled analysis of 9 cohorts. Am J Clin Nutr. 2004;80(6):1508-1520. doi:10.1093/ajcn/80.6.1508
  9. McRae MP. Vitamin C supplementation lowers serum low-density lipoprotein cholesterol and triglycerides: a meta-analysis of 13 randomized controlled trials. J Chiropr Med. 2008;7(2):48-58. doi:10.1016/j.jcme.2008.01.002
  10. Rodrigues da Silva M, Schapochnik A, Peres Leal M, et al. Beneficial effects of ascorbic acid to treat lung fibrosis induced by paraquat. PLoS One. 2018;13(11):e0205535. doi:10.1371/journal.pone.0205535
  11. Hemila H, Chalker E. Vitamin C for preventing and treating the common cold. Cochrane database Syst Rev. 2013;(1):CD000980. doi:10.1002/14651858.CD000980.pub4
  12. Mock DM. Biotin: From Nutrition to Therapeutics. J Nutr. 2017;147(8):1487-1492. doi:10.3945/jn.116.238956
  13. Xiang X, Liu Y, Zhang X, Zhang W, Wang Z. [Effects of biotin on blood glucose regulation in type 2 diabetes rat model]. Wei Sheng Yan Jiu. 2015;44(2):185-189,195.
  14. Lipner SR. Rethinking biotin therapy for hair, nail, and skin disorders. J Am Acad Dermatol. 2018;78(6):1236-1238. doi:10.1016/j.jaad.2018.02.018
  15. Lipner SR, Scher RK. Biotin for the treatment of nail disease: what is the evidence? J Dermatolog Treat. 2018;29(4):411-414. doi:10.1080/09546634.2017.1395799
  16. Spence JD. Metabolic vitamin B12 deficiency: a missed opportunity to prevent dementia and stroke. Nutr Res. 2016;36(2):109-116. doi:10.1016/j.nutres.2015.10.003
  17. Moore E, Mander A, Ames D, Carne R, Sanders K, Watters D. Cognitive impairment and vitamin B12: a review. Int psychogeriatrics. 2012;24(4):541-556. doi:10.1017/S1041610211002511
  18. Leahy LG. Vitamin B Supplementation: What’s the Right Choice for Your Patients? J Psychosoc Nurs Ment Health Serv. 2017;55(7):7-11. doi:10.3928/02793695-20170619-02
  19. Koury MJ, Ponka P. New insights into erythropoiesis: the roles of folate, vitamin B12, and iron. Annu Rev Nutr. 2004;24:105-131. doi:10.1146/annurev.nutr.24.012003.132306
  20. Bunn HF. Vitamin B12 and pernicious anemia--the dawn of molecular medicine. N Engl J Med. 2014;370(8):773-776. doi:10.1056/NEJMcibr1315544
  21. Tucker KL, Rich S, Rosenberg I, et al. Plasma vitamin B-12 concentrations relate to intake source in the Framingham Offspring study. Am J Clin Nutr. 2000;71(2):514-522. doi:10.1093/ajcn/71.2.514
  22. Superko HR, Zhao X-Q, Hodis HN, Guyton JR. Niacin and heart disease prevention: Engraving its tombstone is a mistake. J Clin Lipidol. 2017;11(6):1309-1317. doi:10.1016/j.jacl.2017.08.005
  23. Clofibrate and niacin in coronary heart disease. JAMA. 1975;231(4):360-381.
  24. Gehring W. Nicotinic acid/niacinamide and the skin. J Cosmet Dermatol. 2004;3(2):88-93. doi:10.1111/j.1473-2130.2004.00115.x
  25. Lin F, Xu W, Guan C, et al. Niacin protects against UVB radiation-induced apoptosis in cultured human skin keratinocytes. Int J Mol Med. 2012;29(4):593-600. doi:10.3892/ijmm.2012.886
  26. Ulger B V, Kapan M, Uslukaya O, et al. Comparing the effects of nebivolol and dexpanthenol on wound healing: an experimental study. Int Wound J. 2016;13(3):367-371. doi:10.1111/iwj.12314
  27. Nitto T, Onodera K. Linkage between coenzyme a metabolism and inflammation: roles of pantetheinase. J Pharmacol Sci. 2013;123(1):1-8.
  28. Kennedy DO. B Vitamins and the Brain: Mechanisms, Dose and Efficacy--A Review. Nutrients. 2016;8(2):68. doi:10.3390/nu8020068
  29. Abraham GE, Schwartz UD, Lubran MM. Effect of vitamin B-6 on plasma and red blood cell magnesium levels in premenopausal women. Ann Clin Lab Sci. 1981;11(4):333-336.
  30. Mikawa Y, Mizobuchi S, Egi M, Morita K. Low serum concentrations of vitamin B6 and iron are related to panic attack and hyperventilation attack. Acta Med Okayama. 2013;67(2):99-104. doi:10.18926/AMO/49668
  31. Yasuda H, Fujiwara N, Ishizaki Y, Komatsu N. Anemia attributed to vitamin B6 deficiency in post-pancreaticoduodenectomy patients. Pancreatology. 2015;15(1):81-83. doi:10.1016/j.pan.2014.12.001
  32. Ashoori M, Saedisomeolia A. Riboflavin (vitamin B(2)) and oxidative stress: a review. Br J Nutr. 2014;111(11):1985-1991. doi:10.1017/S0007114514000178
  33. Thakur K, Tomar SK, Singh AK, Mandal S, Arora S. Riboflavin and health: A review of recent human research. Crit Rev Food Sci Nutr. 2017;57(17):3650-3660. doi:10.1080/10408398.2016.1145104
  34. Spector R. Riboflavin homeostasis in the central nervous system. J Neurochem. 1980;35(1):202-209.
  35. Holland S, Silberstein SD, Freitag F, Dodick DW, Argoff C, Ashman E. Evidence-based guideline update: NSAIDs and other complementary treatments for episodic migraine prevention in adults: report of the Quality Standards Subcommittee of the American Academy of Neurology and the American Headache Society. Neurology. 2012;78(17):1346-1353. doi:10.1212/WNL.0b013e3182535d0c
  36. Alvarez OM, Gilbreath RL. Effect of dietary thiamine on intermolecular collagen cross-linking during wound repair: a mechanical and biochemical assessment. J Trauma. 1982;22(1):20-24.
  37. Henderson GI, Dillon M, Schenker S. Effect of diet-induced thiamine deficiency on visceral DNA synthesis and tissue composition. Biochem Pharmacol. 1976;25(20):2275-2284.
  38. Lonsdale D. A review of the biochemistry, metabolism and clinical benefits of thiamin(e) and its derivatives. Evid Based Complement Alternat Med. 2006;3(1):49-59. doi:10.1093/ecam/nek009
  39. Santulli G, Nakashima R, Yuan Q, Marks AR. Intracellular calcium release channels: an update. J Physiol. 2017;595(10):3041-3051. doi:10.1113/JP272781
  40. Contet C, Goulding SP, Kuljis DA, Barth AL. BK Channels in the Central Nervous System. Int Rev Neurobiol. 2016;128:281-342. doi:10.1016/bs.irn.2016.04.001
  41. Bristow SM, Gamble GD, Stewart A, Horne AM, Reid IR. Acute effects of calcium supplements on blood pressure and blood coagulation: secondary analysis of a randomised controlled trial in post-menopausal women. Br J Nutr. 2015;114(11):1868-1874. doi:10.1017/S0007114515003694
  42. Lopez-Serrano D, Solano F, Sanchez-Amat A. Involvement of a novel copper chaperone in tyrosinase activity and melanin synthesis in Marinomonas mediterranea. Microbiology. 2007;153(Pt 7):2241-2249. doi:10.1099/mic.0.2007/006833-0
  43. Collins JF, Prohaska JR, Knutson MD. Metabolic crossroads of iron and copper. Nutr Rev. 2010;68(3):133-147. doi:10.1111/j.1753-4887.2010.00271.x
  44. Opazo CM, Greenough MA, Bush AI. Copper: from neurotransmission to neuroproteostasis. Front Aging Neurosci. 2014;6:143. doi:10.3389/fnagi.2014.00143
  45. Houston M. The role of magnesium in hypertension and cardiovascular disease. J Clin Hypertens (Greenwich). 2011;13(11):843-847. doi:10.1111/j.1751-7176.2011.00538.x
  46. Volpe SL. Magnesium in disease prevention and overall health. Adv Nutr. 2013;4(3):378S-83S. doi:10.3945/an.112.003483
  47. Jahnen-Dechent W, Ketteler M. Magnesium basics. Clin Kidney J. 2012;5(Suppl 1):i3-i14. doi:10.1093/ndtplus/sfr163
  48. King DE, Mainous AG 3rd, Geesey ME, Woolson RF. Dietary magnesium and C-reactive protein levels. J Am Coll Nutr. 2005;24(3):166-171.
  49. Leach RMJ, Muenster AM. Studies on the role of manganese in bone formation. I. Effect upon the mucopolysaccharide content of chick bone. J Nutr. 1962;78:51-56. doi:10.1093/jn/78.1.51
  50. Lee B, Pine M, Johnson L, Rettori V, Hiney JK, Dees W Les. Manganese acts centrally to activate reproductive hormone secretion and pubertal development in male rats. Reprod Toxicol. 2006;22(4):580-585. doi:10.1016/j.reprotox.2006.03.011
  51. Chen P, Bornhorst J, Aschner M. Manganese metabolism in humans. Front Biosci (Landmark Ed. 2018;23:1655-1679.
  52. Ventura M, Melo M, Carrilho F. Selenium and Thyroid Disease: From Pathophysiology to Treatment. Int J Endocrinol. 2017;2017:1297658. doi:10.1155/2017/1297658
  53. Barranco WT, Hudak PF, Eckhert CD. Evaluation of ecological and in vitro effects of boron on prostate cancer risk (United States). Cancer Causes Control. 2007;18(1):71-77. doi:10.1007/s10552-006-0077-8
  54. Sayehmiri K, Azami M, Mohammadi Y, Soleymani A, Tardeh Z. The association between Selenium and Prostate Cancer: a Systematic Review and Meta-Analysis. Asian Pac J Cancer Prev. 2018;19(6):1431-1437. doi:10.22034/APJCP.2018.19.6.1431
  55. Flores-Mateo G, Navas-Acien A, Pastor-Barriuso R, Guallar E. Selenium and coronary heart disease: a meta-analysis. Am J Clin Nutr. 2006;84(4):762-773. doi:10.1093/ajcn/84.4.762
  56. Shahar A, Patel K V, Semba RD, et al. Plasma selenium is positively related to performance in neurological tasks assessing coordination and motor speed. Mov Disord. 2010;25(12):1909-1915. doi:10.1002/mds.23218
  57. Akbaraly TN, Hininger-Favier I, Carriere I, et al. Plasma selenium over time and cognitive decline in the elderly. Epidemiology. 2007;18(1):52-58. doi:10.1097/01.ede.0000248202.83695.4e
  58. Kogan S, Sood A, Garnick MS. Zinc and Wound Healing: A Review of Zinc Physiology and Clinical Applications. Wounds a Compend Clin Res Pract. 2017;29(4):102-106.
  59. Pisano M, Hilas O. Zinc and Taste Disturbances in Older Adults: A Review of the Literature. Consult Pharm. 2016;31(5):267-270. doi:10.4140/TCP.n.2016.267
  60. Grahn BH, Paterson PG, Gottschall-Pass KT, Zhang Z. Zinc and the eye. J Am Coll Nutr. 2001;20(2 Suppl):106-118.
  61. Shankar AH, Prasad AS. Zinc and immune function: the biological basis of altered resistance to infection. Am J Clin Nutr. 1998;68(2 Suppl):447S-463S. doi:10.1093/ajcn/68.2.447S
  62. Liu Y-L, Zhang M-N, Tong G-Y, et al. The effectiveness of zinc supplementation in men with isolated hypogonadotropic hypogonadism. Asian J Androl. 2017;19(3):280-285. doi:10.4103/1008-682X.189621
  63. Prasad AS, Mantzoros CS, Beck FW, Hess JW, Brewer GJ. Zinc status and serum testosterone levels of healthy adults. Nutrition. 1996;12(5):344-348.
  64. Dissanayake D, Wijesinghe PS, Ratnasooriya WD, Wimalasena S. Effects of zinc supplementation on sexual behavior of male rats. J Hum Reprod Sci. 2009;2(2):57-61. doi:10.4103/0974-1208.57223
  65. Tan B, Li X, Yin Y, et al. Regulatory roles for L-arginine in reducing white adipose tissue. Front Biosci (Landmark Ed. 2012;17:2237-2246.
  66. Rutberg S. L-arginine may help blast belly fat. New Hope Network. https://www.newhope.com/breaking-news/l-arginine-may-help-blast-belly-fat-apologies-dr-oz. Published 2014. Accessed January 8, 2019.
  67. Moncada S, Higgs A. The L-arginine-nitric oxide pathway. N Engl J Med. 1993;329(27):2002-2012. doi:10.1056/NEJM199312303292706
  68. Jobgen W et al. Dietary l-arginine supplementation reduces white fat gain and enhances skeletal muscle and brown fat masses in diet-induced obese rats. J Nutr. 2009;139(2):230-237.
  69. Norton LE, Layman DK. Leucine regulates translation initiation of protein synthesis in skeletal muscle after exercise. J Nutr. 2006;136(2):533S-537S. doi:10.1093/jn/136.2.533S
  70. Blomstrand E, Eliasson J, Karlsson HKR, Kohnke R. Branched-chain amino acids activate key enzymes in protein synthesis after physical exercise. J Nutr. 2006;136(1 Suppl):269S-73S. doi:10.1093/jn/136.1.269S
  71. Jackman SR, Witard OC, Philp A, Wallis GA, Baar K, Tipton KD. Branched-Chain Amino Acid Ingestion Stimulates Muscle Myofibrillar Protein Synthesis following Resistance Exercise in Humans. Front Physiol. 2017;8:390. doi:10.3389/fphys.2017.00390
  72. Hoppel C. The role of carnitine in normal and altered fatty acid metabolism. Am J Kidney Dis. 2003;41(4 Suppl 4):S4-12.
  73. Ringseis R, Keller J, Eder K. Role of carnitine in the regulation of glucose homeostasis and insulin sensitivity: evidence from in vivo and in vitro studies with carnitine supplementation and carnitine deficiency. Eur J Nutr. 2012;51(1):1-18. doi:10.1007/s00394-011-0284-2
  74. Smeland OB, Meisingset TW, Borges K, Sonnewald U. Chronic acetyl-L-carnitine alters brain energy metabolism and increases noradrenaline and serotonin content in healthy mice. Neurochem Int. 2012;61(1):100-107. doi:10.1016/j.neuint.2012.04.008
  75. DiNicolantonio JJ, Lavie CJ, Fares H, Menezes AR, O’Keefe JH. L-carnitine in the secondary prevention of cardiovascular disease: systematic review and meta-analysis. Mayo Clin Proc. 2013;88(6):544-551. doi:10.1016/j.mayocp.2013.02.007
  76. Sureda A, Cordova A, Ferrer MD, Perez G, Tur JA, Pons A. L-citrulline-malate influence over branched chain amino acid utilization during exercise. Eur J Appl Physiol. 2010;110(2):341-351. doi:10.1007/s00421-010-1509-4
  77. Moinard C, Nicolis I, Neveux N, Darquy S, Benazeth S, Cynober L. Dose-ranging effects of citrulline administration on plasma amino acids and hormonal patterns in healthy subjects: the Citrudose pharmacokinetic study. Br J Nutr. 2008;99(4):855-862. doi:10.1017/S0007114507841110
  78. Takeda K, Machida M, Kohara A, Omi N, Takemasa T. Effects of citrulline supplementation on fatigue and exercise performance in mice. J Nutr Sci Vitaminol (Tokyo). 2011;57(3):246-250.
  79. Cormio L, De Siati M, Lorusso F, et al. Oral L-citrulline supplementation improves erection hardness in men with mild erectile dysfunction. Urology. 2011;77(1):119-122. doi:10.1016/j.urology.2010.08.028
  80. Jepson MM, Bates PC, Broadbent P, Pell JM, Millward DJ. Relationship between glutamine concentration and protein synthesis in rat skeletal muscle. Am J Physiol. 1988;255(2 Pt 1):E166-72. doi:10.1152/ajpendo.1988.255.2.E166
  81. Calder PC, Yaqoob P. Glutamine and the immune system. Amino Acids. 1999;17(3):227-241.
  82. Kim M-H, Kim H. The Roles of Glutamine in the Intestine and Its Implication in Intestinal Diseases. Int J Mol Sci. 2017;18(5). doi:10.3390/ijms18051051
  83. Lacey JM, Wilmore DW. Is glutamine a conditionally essential amino acid? Nutr Rev. 1990;48(8):297-309.
  84. Civitelli R, Villareal DT, Agnusdei D, Nardi P, Avioli L V, Gennari C. Dietary L-lysine and calcium metabolism in humans. Nutrition. 1992;8(6):400-405.
  85. Dourmad JY, Noblet J, Etienne M. Effect of protein and lysine supply on performance, nitrogen balance, and body composition changes of sows during lactation. J Anim Sci. 1998;76(2):542-550.
  86. Griffith RS, DeLong DC, Nelson JD. Relation of arginine-lysine antagonism to herpes simplex growth in tissue culture. Chemotherapy. 1981;27(3):209-213. doi:10.1159/000237979
  87. Griffith RS, Walsh DE, Myrmel KH, Thompson RW, Behforooz A. Success of L-lysine therapy in frequently recurrent herpes simplex infection. Treatment and prophylaxis. Dermatologica. 1987;175(4):183-190.
  88. Sugino T, Shirai T, Kajimoto Y, Kajimoto O. L-ornithine supplementation attenuates physical fatigue in healthy volunteers by modulating lipid and amino acid metabolism. Nutr Res. 2008;28(11):738-743. doi:10.1016/j.nutres.2008.08.008
  89. Butterworth RF, Canbay A. Hepatoprotection by L-Ornithine L-Aspartate in Non-Alcoholic Fatty Liver Disease. Dig Dis. 2019;37(1):63-68. doi:10.1159/000491429
  90. Yan Z, Wang Y, Mao Q, et al. [Effect of L-ornithine L-aspartate granules in treating chronic liver disease in patients with high-level serum gamma-glutamyltransferase]. Zhonghua Gan Zang Bing Za Zhi. 2014;22(7):525-528. doi:10.3760/cma.j.issn.1007-3418.2014.07.010
  91. Le Boucher J, Eurengbiol, Farges MC, Minet R, Vasson MP, Cynober L. Modulation of immune response with ornithine A-ketoglutarate in burn injury: an arginine or glutamine dependency? Nutrition. 1999;15(10):773-777.
  92. Abdali D, Samson SE, Grover AK. How effective are antioxidant supplements in obesity and diabetes? Med Princ Pract. 2015;24(3):201-215. doi:10.1159/000375305
  93. Kucukgoncu S, Zhou E, Lucas KB, Tek C. Alpha-lipoic acid (ALA) as a supplementation for weight loss: results from a meta-analysis of randomized controlled trials. Obes Rev. 2017;18(5):594-601. doi:10.1111/obr.12528
  94. Shay K et al. Alpha-lipoic acid as a dietary supplement: Molecular mechanisms and therapeutic potential. Biochim Biophys Acta. 2009;1790(10):1149-1160.
  95. Fava A, Pirritano D, Plastino M, et al. The Effect of Lipoic Acid Therapy on Cognitive Functioning in Patients with Alzheimer’s Disease. J Neurodegener Dis. 2013;2013:454253. doi:10.1155/2013/454253
  96. Hager K, Kenklies M, McAfoose J, Engel J, Munch G. Alpha-lipoic acid as a new treatment option for Alzheimer’s disease--a 48 months follow-up analysis. J Neural Transm Suppl. 2007;(72):189-193.
  97. Shinto L, Quinn J, Montine T, et al. A randomized placebo-controlled pilot trial of omega-3 fatty acids and alpha lipoic acid in Alzheimer’s disease. J Alzheimers Dis. 2014;38(1):111-120. doi:10.3233/JAD-130722
  98. Ziegler D, Hanefeld M, Ruhnau KJ, et al. Treatment of symptomatic diabetic peripheral neuropathy with the anti-oxidant alpha-lipoic acid. A 3-week multicentre randomized controlled trial (ALADIN Study). Diabetologia. 1995;38(12):1425-1433.
  99. Xue R, Yang J, Wu J, Meng Q, Hao J. Coenzyme Q10 inhibits the activation of pancreatic stellate cells through PI3K/AKT/mTOR signaling pathway. Oncotarget. 2017;8(54):92300-92311. doi:10.18632/oncotarget.21247
  100. Hernandez-Camacho J et al. Coenzyme Q10 supplementation in aging and disease. Front Physiol. 2018;9:44.
  101. Cooke M, Iosia M, Buford T, et al. Effects of acute and 14-day coenzyme Q10 supplementation on exercise performance in both trained and untrained individuals. J Int Soc Sports Nutr. 2008;5:8. doi:10.1186/1550-2783-5-8
  102. Coenzyme Q10. PDR Health. http://fodsupport.org/pdf/Description_of_CoQ_10.pdf. Accessed January 10, 2019.
  103. Sandor PS, Di Clemente L, Coppola G, et al. Efficacy of coenzyme Q10 in migraine prophylaxis: a randomized controlled trial. Neurology. 2005;64(4):713-715. doi:10.1212/01.WNL.0000151975.03598.ED
  104. Gaucher C et al. Glutathione: Antioxidant properties dedicated to nanotechnologies. Antioxidants. 2018;7(5):62.
  105. Bains, VK & Bains R. The antioxidant master glutathione and periodontal health. Dent Res J. 2015;12(5):389-405.
  106. Sacco R, Eggenhoffner R, Giacomelli L. Glutathione in the treatment of liver diseases: insights from clinical practice. Minerva Gastroenterol Dietol. 2016;62(4):316-324.
  107. Yuan L, Kaplowitz N. Glutathione in liver diseases and hepatotoxicity. Mol Aspects Med. 2009;30(1-2):29-41. doi:10.1016/j.mam.2008.08.003
  108. Johnson, WM, Wilson-Delfosse, AL, & Mieyal J. Dysregulation of glutathione homeostasis in neurodegenerative diseases. Nutrients. 2012;4(10):1399-1440.
  109. Kloek J, Mortaz E, van Ark I, Lilly CM, Nijkamp FP, Folkerts G. Glutathione prevents the early asthmatic reaction and airway hyperresponsiveness in guinea pigs. J Physiol Pharmacol. 2010;61(1):67-72.
  110. Balendiran, GK, Dabur, R, & Fraser D. The role of glutathione in cancer. Cell Biochem Funct. 2004;22(6):343-352.
  111. Lenton KJ, Sane AT, Therriault H, Cantin AM, Payette H, Wagner JR. Vitamin C augments lymphocyte glutathione in subjects with ascorbate deficiency. Am J Clin Nutr. 2003;77(1):189-195. doi:10.1093/ajcn/77.1.189
  112. Johnston CS, Meyer CG, Srilakshmi JC. Vitamin C elevates red blood cell glutathione in healthy adults. Am J Clin Nutr. 1993;58(1):103-105. doi:10.1093/ajcn/58.1.103
  113. Taniguchi M, Nagao K, Inoue K, Imaizumi K. Cholesterol lowering effect of sulfur-containing amino acids added to a soybean protein diet in rats. J Nutr Sci Vitaminol (Tokyo). 2008;54(6):448-453.
  114. Thielemann LE, Oberhauser EW, Rosenblut G, Videla LA, Valenzuela A. Sulfur-containing amino acids that increase renal glutathione protect the kidney against papillary necrosis induced by 2-bromoethylamine. Cell Biochem Funct. 1990;8(1):19-24. doi:10.1002/cbf.290080104
  115. Ortmeyer HK. Dietary myoinositol results in lower urine glucose and in lower postprandial plasma glucose in obese insulin resistant rhesus monkeys. Obes Res. 1996;4(6):569-575.
  116. Condorelli RA, La Vignera S, Bellanca S, Vicari E, Calogero AE. Myoinositol: does it improve sperm mitochondrial function and sperm motility? Urology. 2012;79(6):1290-1295. doi:10.1016/j.urology.2012.03.005
  117. Unfer V, Carlomagno G, Papaleo E, Vailati S, Candiani M, Baillargeon J-P. Hyperinsulinemia Alters Myoinositol to d-chiroinositol Ratio in the Follicular Fluid of Patients With PCOS. Reprod Sci. 2014;21(7):854-858. doi:10.1177/1933719113518985
  118. Gelenberg AJ, Doller-Wojcik JC, Growdon JH. Choline and lecithin in the treatment of tardive dyskinesia: preliminary results from a pilot study. Am J Psychiatry. 1979;136(6):772-776. doi:10.1176/ajp.136.6.772
  119. Cubells JM, Hernando C. Clinical trial on the use of cytidine diphosphate choline in Parkinson’s disease. Clin Ther. 1988;10(6):664-671.
  120. Bizzarri M, Carlomagno G. Inositol: history of an effective therapy for Polycystic Ovary Syndrome. Eur Rev Med Pharmacol Sci. 2014;18(13):1896-1903.
  121. Zacche MM, Caputo L, Filippis S, Zacche G, Dindelli M, Ferrari A. Efficacy of myo-inositol in the treatment of cutaneous disorders in young women with polycystic ovary syndrome. Gynecol Endocrinol. 2009;25(8):508-513. doi:10.1080/09513590903015544
  122. Gerli S, Papaleo E, Ferrari A, Di Renzo GC. Randomized, double blind placebo-controlled trial: effects of myo-inositol on ovarian function and metabolic factors in women with PCOS. Eur Rev Med Pharmacol Sci. 2007;11(5):347-354.
  123. Gerli S, Mignosa M, Di Renzo GC. Effects of inositol on ovarian function and metabolic factors in women with PCOS: a randomized double blind placebo-controlled trial. Eur Rev Med Pharmacol Sci. 2003;7(6):151-159.
  124. Yao ZM, Vance DE. The active synthesis of phosphatidylcholine is required for very low density lipoprotein secretion from rat hepatocytes. J Biol Chem. 1988;263(6):2998-3004.
  125. Buchman AL, Dubin MD, Moukarzel AA, et al. Choline deficiency: a cause of hepatic steatosis during parenteral nutrition that can be reversed with intravenous choline supplementation. Hepatology. 1995;22(5):1399-1403.
  126. Buchman AL, Ament ME, Sohel M, et al. Choline deficiency causes reversible hepatic abnormalities in patients receiving parenteral nutrition: proof of a human choline requirement: a placebo-controlled trial. JPEN J Parenter Enteral Nutr. 2001;25(5):260-268. doi:10.1177/0148607101025005260
  127. Blusztajn JK, Slack BE, Mellott TJ. Neuroprotective Actions of Dietary Choline. Nutrients. 2017;9(8). doi:10.3390/nu9080815
  128. De Jesus Moreno Moreno M. Cognitive improvement in mild to moderate Alzheimer’s dementia after treatment with the acetylcholine precursor choline alfoscerate: a multicenter, double-blind, randomized, placebo-controlled trial. Clin Ther. 2003;25(1):178-193.